Spectral-Index Parameters

The spectral indices to be measured by the DAP are divided into two groups: (1) absorption-line indices that measure the equivalent width of an absorption feature and (2) bandhead or color indices that measure the ratio of fluxes is in two passbands. Both sets of indices are measured using mangadap.proc.spectralindices.SpectralIndices; see Spectral-Index Measurements.

Absorption-line Index Parameters

The table below provides a compilation of absorption-line indices. Recent survey-level runs of the DAP have included all of these measurements.

Name Main Passband (Å) Blue Sideband (Å) Red Sideband (Å) Frame Units Ref
CN1 4142.125 – 4177.125 4080.125 – 4117.625 4244.125 – 4284.125 air mag [1]
CN2 4142.125 – 4177.125 4083.875 – 4096.375 4244.125 – 4284.125 air mag [1]
Ca4227 4222.250 – 4234.750 4211.000 – 4219.750 4241.000 – 4251.000 air [1]
G4300 4281.375 – 4316.375 4266.375 – 4282.625 4318.875 – 4335.125 air [1]
Fe4383 4369.125 – 4420.375 4359.125 – 4370.375 4442.875 – 4455.375 air [1]
Ca4455 4452.125 – 4474.625 4445.875 – 4454.625 4477.125 – 4492.125 air [1]
Fe4531 4514.250 – 4559.250 4504.250 – 4514.250 4560.500 – 4579.250 air [1]
C24668 4634.000 – 4720.250 4611.500 – 4630.250 4742.750 – 4756.500 air [1]
Hb 4847.875 – 4876.625 4827.875 – 4847.875 4876.625 – 4891.625 air [1]
Fe5015 4977.750 – 5054.000 4946.500 – 4977.750 5054.000 – 5065.250 air [1]
Mg1 5069.125 – 5134.125 4895.125 – 4957.625 5301.125 – 5366.125 air mag [1]
Mg2 5154.125 – 5196.625 4895.125 – 4957.625 5301.125 – 5366.125 air mag [1]
Mgb 5160.125 – 5192.625 5142.625 – 5161.375 5191.375 – 5206.375 air [1]
Fe5270 5245.650 – 5285.650 5233.150 – 5248.150 5285.650 – 5318.150 air [1]
Fe5335 5312.125 – 5352.125 5304.625 – 5315.875 5353.375 – 5363.375 air [1]
Fe5406 5387.500 – 5415.000 5376.250 – 5387.500 5415.000 – 5425.000 air [1]
Fe5709 5696.625 – 5720.375 5672.875 – 5696.625 5722.875 – 5736.625 air [1]
Fe5782 5776.625 – 5796.625 5765.375 – 5775.375 5797.875 – 5811.625 air [1]
NaD 5876.875 – 5909.375 5860.625 – 5875.625 5922.125 – 5948.125 air [1]
TiO1 5936.625 – 5994.125 5816.625 – 5849.125 6038.625 – 6103.625 air mag [1]
TiO2 6189.625 – 6272.125 6066.625 – 6141.625 6372.625 – 6415.125 air mag [1]
HDeltaA 4083.500 – 4122.250 4041.600 – 4079.750 4128.500 – 4161.000 air [2]
HGammaA 4319.750 – 4363.500 4283.500 – 4319.750 4367.250 – 4419.750 air [2]
HDeltaF 4091.000 – 4112.250 4057.250 – 4088.500 4114.750 – 4137.250 air [2]
HGammaF 4331.250 – 4352.250 4283.500 – 4319.750 4354.750 – 4384.750 air [2]
CaHK 3899.5 – 4003.5 3806.5 – 3833.8 4020.7 – 4052.4 air [3]
CaII1 8484.0 – 8513.0 8474.0 – 8484.0 8563.0 – 8577.0 air [4]
CaII2 8522.0 – 8562.0 8474.0 – 8484.0 8563.0 – 8577.0 air [4]
CaII3 8642.0 – 8682.0 8619.0 – 8642.0 8700.0 – 8725.0 air [4]
Pa17 8461.0 – 8474.0 8474.0 – 8484.0 8563.0 – 8577.0 air [4]
Pa14 8577.0 – 8619.0 8563.0 – 8577.0 8619.0 – 8642.0 air [4]
Pa12 8730.0 – 8772.0 8700.0 – 8725.0 8776.0 – 8792.0 air [4]
MgICvD 5165.0 – 5220.0 5125.0 – 5165.0 5220.0 – 5260.0 vac [5]
NaICvD 8177.0 – 8205.0 8170.0 – 8177.0 8205.0 – 8215.0 vac [5]
MgIIR 8801.9 – 8816.9 8777.4 – 8789.4 8847.4 – 8857.4 vac [5]
FeHCvD 9905.0 – 9935.0 9855.0 – 9880.0 9940.0 – 9970.0 vac [5]
NaI 8168.500 – 8234.125 8150.000 – 8168.400 8235.250 – 8250.000 air [6]
bTiO 4758.500 – 4800.000 4742.750 – 4756.500 4827.875 – 4847.875 air mag [7]
aTiO 5445.000 – 5600.000 5420.000 – 5442.000 5630.000 – 5655.000 air mag [7]
CaH1 6357.500 – 6401.750 6342.125 – 6356.500 6408.500 – 6429.750 air mag [7]
CaH2 6775.000 – 6900.000 6510.000 – 6539.250 7017.000 – 7064.000 air mag [7]
NaISDSS 8180.0 – 8200.0 8143.0 – 8153.0 8233.0 – 8244.0 air [8]
TiO2SDSS 6189.625 – 6272.125 6066.625 – 6141.625 6422.0 – 6455.0 air mag [8]

Input Data Format

The parameters that define the absorption-line index calculations are provided via the mangadap.par.absorptionindexdb.AbsorptionIndexDB object, which is built using an SDSS-style parameter file. The core level class that calculates the raw absorption-line indices is mangadap.proc.spectralindices.AbsorptionLineIndices.

The columns of the parameter file are:

Parameter Format Description
index int Unique integer identifier of the absorption-line index. Must be unique.
name str Name of the index. Must be unique.
primary float[2] A two-element vector with the starting and ending wavelength for the primary passband surrounding the absorption feature(s).
blueside float[2] A two-element vector with the starting and ending wavelength for a passband to the blue of the primary band.
redside float[2] A two-element vector with the starting and ending wavelength for a passband to the red of the primary band.
waveref str The reference frame of the wavelengths; must be either ‘air’ for air or ‘vac’ for vacuum.
units str Units for the absorption index, which must be either ‘ang’ or ‘mag’.
component int Never used: Binary flag (0-false,1-true) that the index is a component of a composite index. If true (1), all components with the same NAME are added together to form the composite index.

and an example file might look like this:

typedef struct {
    int index;
    char name[9];
    double primary[2];
    double blueside[2];
    double redside[2];
    char waveref[3];
    char units[3];
    int component;
} DAPABI;

DAPABI  1  CN1        { 4142.125  4177.125 }  { 4080.125  4117.625 }  { 4244.125  4284.125 }  air  mag  0
DAPABI  2  CN2        { 4142.125  4177.125 }  { 4083.875  4096.375 }  { 4244.125  4284.125 }  air  mag  0

Note that the functionality implied by the component parameter has been a notional future development for the module, but has never been implemented. However, unfortunately, it’s still a required element of the database file.

Changing the absorption-line index parameters

The absorption-line indices are measured by mangadap.proc.spectralindices.SpectralIndices; see Spectral-Index Measurements. A set of parameter files that define a list of absorption-line index sets are provided with the DAP source distribution and located at $MANGADAP_DIR/data/absorption_indices. There are a few methods that you can use to change the set of absorption-line index parameters used by mangadap.proc.spectralindices.SpectralIndices:

  1. To use one of the existing parameter databases, you can change the absorption_indices keyword in the mangadap.proc.spectralindices.SpectralIndices configuration file. The keyword should be the capitalized root of the parameter filename. E.g., to use $MANGADAP_DIR/data/absorption_indices/lickindx.par, set the keyword to LICKINDX.
  2. To use a new parameter database, write the file and save it in the $MANGADAP_DIR/data/absorption_indices/ directory, and then change the relevant configuration file in the same way as described above.

Bandhead or Color Index Parameters

The table below provides a compilation of bandhead and color indices. Recent survey-level runs of the DAP have included all of these measurements.

Name Blue Sideband (Å) Red Sideband (Å) Frame Integrand Order Ref
D4000 3750 – 3950 4050 – 4250 air \(F_\nu\) R/B [9]
Dn4000 3850 – 3950 4000 – 4100 air \(F_\nu\) R/B [10]
TiOCvD 8835 – 8855 8870 – 8890 vac \(F_\lambda\) B/R [5]

Input Data Format

The parameters that define the bandhead index calculations are provided via the mangadap.par.bandheadindexdb.BandheadIndexDB object, which is built using an SDSS-style parameter file. The core level class that calculates the raw bandhead indices is mangadap.proc.spectralindices.BandheadIndices.

The columns of the parameter file are:

Parameter Format Description
index int Unique integer identifier of the absorption-line index. Must be unique.
name str Name of the index. Must be unique.
blueside float[2] A two-element vector with the starting and ending wavelength for a passband to the blue of the primary band.
redside float[2] A two-element vector with the starting and ending wavelength for a passband to the red of the primary band.
waveref str The reference frame of the wavelengths; must be either ‘air’ for air or ‘vac’ for vacuum.
integrand str Integrand within the passband for the construction of the index, which must be either ‘fnu’ or ‘flambda’.
order str Define the order to use when constructing the index. The options are either a ratio of red-to-blue or blue-to-red, which are respectively selected using ‘r_b’ or ‘b_r’.

and an example file might look like this:

typedef struct {
    int index;
    char name[9];
    double blueside[2];
    double redside[2];
    char waveref[3];
    char integrand[7];
    char order[3];
} DAPBHI;

DAPBHI  1  D4000      { 3750.000  3950.000 }  { 4050.000  4250.000 }  air      fnu  r_b
DAPBHI  2  Dn4000     { 3850.000  3950.000 }  { 4000.000  4100.000 }  air      fnu  r_b
DAPBHI  3  TiOCvD     { 8835.000  8855.000 }  { 8870.000  8890.000 }  vac  flambda  b_r

Changing the bandhead index parameters

The bandhead and color indices are measured by mangadap.proc.spectralindices.SpectralIndices; see Spectral-Index Measurements. A set of parameter files that define a list of bandhead index sets are provided with the DAP source distribution and located at $MANGADAP_DIR/data/bandhead_indices. There are a few methods that you can use to change the set of bandhead-index parameters used by mangadap.proc.spectralindices.SpectralIndices:

  1. To use one of the existing parameter databases, you can change the bandhead_indices keyword in the mangadap.proc.spectralindices.SpectralIndices configuration file. The keyword should be the capitalized root of the parameter filename. E.g., to use $MANGADAP_DIR/data/bandhead_indices/bhbasic.par, set the keyword to BHBASIC.
  2. To use a new parameter database, write the file and save it in the $MANGADAP_DIR/data/bandhead_indices/ directory, and then change the relevant configuration file in the same way as described above.

[1](1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21) Trager et al. (1998, ApJS, 116, 1)
[2](1, 2, 3, 4) Worthey & Ottaviani (1997, ApJS, 111, 377)
[3]Serven et al. (2005, ApJ, 627, 754)
[4](1, 2, 3, 4, 5, 6) Cenarro et al. (2001, MNRAS, 326, 959); however, note that each index is considered seperately, which is not the definition provided in Table 4 of their paper.
[5](1, 2, 3, 4, 5) Conroy & van Dokkum (2012, ApJ, 747, 69)
[6]Spiniello et al. (2012, ApJL, 753, 32)
[7](1, 2, 3, 4) Spiniello et al. (2014, MNRAS, 438, 1483)
[8](1, 2) La Barbera et al. (2013, MNRAS, 433, 3017)
[9]Bruzual (1983, ApJ, 273, 105)
[10]Balogh et al. (1999, ApJ, 527, 54)