Source code for mangadap.util.geometry

# Licensed under a 3-clause BSD style license - see LICENSE.rst
# -*- coding: utf-8 -*-
"""

Provides a set of utility functions dealing with computational geometry.

----

.. include license and copyright
.. include:: ../include/copy.rst

----

.. include common links, assuming primary doc root is up one directory
.. include:: ../include/links.rst
"""

import numpy
from scipy import linalg

[docs]def polygon_winding_number(polygon, point): """ Determine the winding number of a 2D polygon about a point. The code does **not** check if the polygon is simple (no interesecting line segments). Algorithm taken from Numerical Recipies Section 21.4. Args: polygon (numpy.ndarray): An Nx2 array containing the x,y coordinates of a polygon. The points should be ordered either counter-clockwise or clockwise. point (numpy.ndarray): A 2-element array defining the x,y position of the point to use as a reference for the winding number. Returns: int: Winding number of `polygon` w.r.t. `point` Raises: ValueError: Raised if `polygon` is not 2D, if `polygon` does not have two columns, or if `point` is not a 2-element array. """ # Check input shape is for 2D only if len(polygon.shape) != 2: raise ValueError('Polygon must be an Nx2 array.') if polygon.shape[1] != 2: raise ValueError('Polygon must be in two dimensions.') if point.size != 2: raise ValueError('Point must contain two elements.') # Get the winding number np=polygon.shape[0] x0 = polygon[np-1,0] y0 = polygon[np-1,1] wind = 0 for i in range(np): if (y0 > point[1]): if polygon[i,1] <= point[1] and \ (x0-point[0])*(polygon[i,1]-point[1]) - (y0-point[1])*(polygon[i,0]-point[0]) < 0: wind -= 1 else: if polygon[i,1] > point[1] and \ (x0-point[0])*(polygon[i,1]-point[1]) - (y0-point[1])*(polygon[i,0]-point[0]) > 0: wind += 1 x0 = polygon[i,0] y0 = polygon[i,1] return wind
[docs]def point_inside_polygon(polygon, point): """ Determine if a point is inside a polygon using the winding number. Args: polygon (numpy.ndarray): An Nx2 array containing the x,y coordinates of a polygon. The points should be ordered either counter-clockwise or clockwise. point (numpy.ndarray): A 2-element array defining the x,y position of the point to use as a reference for the winding number. Returns: bool: True if the point is inside the polygon. .. warning:: If the point is **on** the polygon (or very close to it w.r.t. the machine precision), the returned value is `False`. """ _point = numpy.atleast_2d(point) if _point.shape[-1] != 2: raise ValueError('Provided point must have two elements in last dimension.') if _point.shape[0] == 1: return (abs(polygon_winding_number(polygon, point)) == 1) return numpy.array([ abs(polygon_winding_number(polygon, p)) == 1 for p in _point ])
[docs]def polygon_area(x, y): """ Compute the area of a polygon using the `Shoelace formula <https://en.wikipedia.org/wiki/Shoelace_formula>`_. Inspired by `this discussion <https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates>`_. Args: x (`numpy.ndarray`_): Vector with the Cartesian x-coordinates of the polygon vertices. y (`numpy.ndarray`_): Vector with the Cartesian y-coordinates of the polygon vertices. Returns: :obj:`float`: Polygon area """ return 0.5 * numpy.abs(numpy.dot(x, numpy.roll(y, 1)) - numpy.dot(y, numpy.roll(x, 1)))
[docs]class SemiMajorAxisCoo: r""" Calculate the semi-major axis coordinates given a set of input parameters following :math:`{\mathbf x} = {\mathbf A}^{-1}\ {\mathbf b}`, where .. math:: {\mathbf A} = \left[ \begin{array}{rrrrrr} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \cos\psi & \sin\psi & -1 & 0 & 0 & 0 \\ -\sin\psi & \cos\psi & 0 & -1 & 0 & 0 \\ 0 & 0 & \sin\phi_0 & \cos\phi_0 & -1 & 0 \\ 0 & 0 & -\cos\phi_0 & \sin\phi_0 & 0 & \varepsilon-1 \end{array} \right] {\mathbf b} = \left[ \begin{array}{r} x_f \\ y_f \\ -x_0 \\ -y_0 \\ 0 \\ 0 \end{array} \right] such that .. math:: {\mathbf x} = \left[ \begin{array}{r} x_f \\ y_f \\ x_s \\ y_s \\ x_a \\ y_a \end{array} \right] and: - :math:`\psi` is the Cartesian rotation of the focal-plane relative to the sky-plane (+x toward East; +y toward North), - :math:`\phi_0` is the on-sky position angle of the major axis of the ellipse, defined as the angle from North through East - :math:`\varepsilon=1-b/a` is the ellipticity based on the the semi-minor to semi-major axis ratio (:math:`b/a`). - :math:`(x_f,y_f)` is the sky-right, focal-plane position relative to a reference on-sky position :math:`(x_0,y_0)` relative to the center of the ellipse (galaxy center), - :math:`(x_s,y_s)` is the on-sky position of :math:`(x_f,y_f)` relative to the center of the ellipse, and - :math:`(x_a,y_a)` is the Cartesian position of :math:`(x_f,y_f)` in units of the semi-major axis. This form is used such that :math:`{\mathbf A}` need only be defined once per class instance. The class also allows for inverse calculations, i.e., calculating the focal-plane positions provide the semi-major axis coordinates. In this case, .. math:: {\mathbf C} = \left[ \begin{array}{rrrr} \cos\psi & \sin\psi & -1 & 0 \\ -\sin\psi & \cos\psi & 0 & -1 \\ 0 & 0 & \sin\phi_0 & \cos\phi_0 \\ 0 & 0 & -\cos\phi_0 & \sin\phi_0 \end{array} \right] {\mathbf d} = \left[ \begin{array}{r} -x_0 \\ -y_0 \\ x_a \\ y_a (1-\varepsilon) \end{array} \right] such that .. math:: {\mathbf f} = \left[ \begin{array}{r} x_f \\ y_f \\ x_s \\ y_s \end{array} \right] and :math:`{\mathbf f} = {\mathbf C}^{-1}\ {\mathbf d}`. Args: xc (float): Same as :math:`x_0`, defined above yc (float): Same as :math:`y_0`, defined above rot (float): Same as :math:`\psi`, defined above pa (float): Same as :math:`\phi_0`, defined above ell (float): Same as :math:`\varepsilon`, defined above Attributes: xc,yc (float,float): a reference on-sky position relative to the center of the ellipse (galaxy center); same as :math:`(x_0,y_0)` defined above rot (float): Cartesian rotation of the focal-plane relative to the sky-plane (+x toward East; +y toward North); same as :math:`\psi` defined above pa (float): On-sky position angle of the major axis of the ellipse, defined as the angle from North through East and is the same as :math:`\phi_0` defined above ell (float): Ellipticity define as :math:`\varepsilon=1-b/a`, based on the semi-minor to semi-major axis ratio (:math:`b/a`) of the ellipse. A (numpy.ndarray): The coordinate transformation matrix Alu (numpy.ndarray): The **lu** array returned by `scipy.linalg.lu_factor`_, which is used to calculate the LU decomposition of :math:`{\mathbf A}` Apiv (numpy.ndarray): The **piv** array returned by `scipy.linalg.lu_factor`_, which is used to calculate the LU decomposition of :math:`{\mathbf A}` B (numpy.ndarray): The vector :math:`{\mathbf b}`, as defined above, used to calculate :math:`{\mathbf x} = {\mathbf A}^{-1}\ {\mathbf b}` C (numpy.ndarray): The coordinate transformation matrix use for the inverse operations Clu (numpy.ndarray): The **lu** array returned by `scipy.linalg.lu_factor`_, which is used to calculate the LU decomposition of :math:`{\mathbf C}` Cpiv (numpy.ndarray): The **piv** array returned by `scipy.linalg.lu_factor`_, which is used to calculate the LU decomposition of :math:`{\mathbf C}` D (numpy.ndarray): The vector :math:`{\mathbf d}`, as defined above, used to calculate :math:`{\mathbf f} = {\mathbf C}^{-1}\ {\mathbf d}` """ def __init__(self, xc=None, yc=None, rot=None, pa=None, ell=None): self.xc = 0.0 if xc is None else xc self.yc = 0.0 if yc is None else yc self.rot = 0.0 if rot is None else rot self.pa = 0.0 if pa is None else pa self.ell = 0.0 if ell is None else ell self.A = None self.Alu = None self.Apiv = None self.B = None self._setA() self.C = None self.Clu = None self.Cpiv = None self.D = None self._setC()
[docs] def _defined(self): """ Determine if the object is defined such that its methods can be used to convert between coordinate systems. """ if self.A is None: return False if self.Alu is None: return False if self.Apiv is None: return False if self.C is None: return False if self.Clu is None: return False if self.Cpiv is None: return False return True
[docs] def _setA(self): """ Set the transformation matrix and calculate its LU decomposition for forward operations. """ cosr = numpy.cos( numpy.radians(self.rot) ) sinr = numpy.sin( numpy.radians(self.rot) ) cosp = numpy.cos( numpy.radians(self.pa) ) sinp = numpy.sin( numpy.radians(self.pa) ) #cosi = numpy.cos( numpy.radians(self.inc) ) self.A = numpy.array([ [ 1.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 0.0, 1.0, 0.0, 0.0, 0.0, 0.0 ], [ cosr, sinr, -1.0, 0.0, 0.0, 0.0 ], [ -sinr, cosr, 0.0, -1.0, 0.0, 0.0 ], [ 0.0, 0.0, sinp, cosp, -1.0, 0.0 ], [ 0.0, 0.0, -cosp, sinp, 0.0, self.ell-1. ] ]) self.Alu, self.Apiv = linalg.lu_factor(self.A)
[docs] def _setB(self, x, y): """ Set the on-sky coordinate vector for forward operations. Args: x, y (float) : Single values for use in calculating the semi-major-axis coordinates. """ self.B = numpy.array([ x, y, -self.xc, -self.yc, 0.0, 0.0 ])
[docs] def _setC(self): """ Set the transformation matrix and calculate its LU decomposition for inverse operations. """ cosr = numpy.cos( numpy.radians(self.rot) ) sinr = numpy.sin( numpy.radians(self.rot) ) cosp = numpy.cos( numpy.radians(self.pa) ) sinp = numpy.sin( numpy.radians(self.pa) ) self.C = numpy.array([ [ cosr, sinr, -1.0, 0.0 ], [ -sinr, cosr, 0.0, -1.0 ], [ 0.0, 0.0, sinp, cosp ], [ 0.0, 0.0, -cosp, sinp ] ]) self.Clu, self.Cpiv = linalg.lu_factor(self.C)
[docs] def _setD(self, x, y): """ Set the semi-major-axis coordinate vector for inverse operations. Args: x, y (float) : Single values for use in calculating the on-sky focal plane coordinates. """ self.D = numpy.array([ -self.xc, -self.yc, x, (1-self.ell)*y ])
[docs] def _calculate_polar(self, x, y): r""" Calculate the polar coordinates (radius and azimuth) provided the Cartesian semi-major-axis coordinates :math:`(x_a,y_a)` using .. math:: R &= \sqrt{x_a^2 + y_a^2} \\ \theta &= \tan^{-1}\left(\frac{-y_a}{x_a}\right) Args: x,y (array-like): The semi-major-axis Cartesian coordinates :math:`(x_a,y_a)`. Returns: numpy.ndarray: The semi-major-axis polar coordinates: :math:`R, \theta`. """ # _x = numpy.asarray(x) # _y = numpy.asarray(y) _x = numpy.atleast_1d(x) _y = numpy.atleast_1d(y) if _x.size != _y.size: raise ValueError('X and Y arrays must have the same size') R = numpy.sqrt( _x*_x + _y*_y) theta = numpy.degrees( numpy.arctan2(-_y, _x) ) if hasattr(theta, '__len__'): theta[theta < 0] += 360. elif theta < 0: theta += 360. # Returned range in theta is -pi,pi: convert to 0,2pi return R, theta
[docs] def _calculate_cartesian(self, r, theta): r""" Invert the calculation of the semi-major-axis polar coordinates to calculate the semi-major-axis Cartesian coordinates :math:`(x_a,y_a)` using .. math:: x_a &= \pm R / \sqrt{1 + \tan^2\theta}\\ y_a &= -x_a\ \tan\theta where :math:`x_a` is negative when :math:`\pi/2 \leq \theta < 3\pi/2`. Args: r,theta (array-like): The semi-major-axis polar coordinates :math:`(R,\theta)`. Returns: numpy.ndarray: The semi-major-axis Cartesian coordinates: :math:`x_a, y_a`. """ # _r = numpy.asarray(r) # _theta = numpy.asarray(theta) _r = numpy.atleast_1d(r) _theta = numpy.atleast_1d(theta) if _r.size != _theta.size: raise ValueError('R and THETA arrays must have the same size') tant = numpy.tan(numpy.radians(_theta)) xd = _r/numpy.sqrt(1.0 + numpy.square(tant)) if hasattr(xd, '__len__'): xd[(_theta > 90) & (_theta <= 270)] *= -1. elif _theta > 90 and _theta <= 270: xd *= -1. yd = -xd*tant return xd, yd
[docs] def solve(self, x, y): r""" Use `scipy.linalg.lu_solve`_ to solve :math:`{\mathbf x} = {\mathbf A}^{-1}\ {\mathbf b}`. Args: x,y (array-like): The coordinates :math:`(x_f,y_f)`, which are the sky-right, focal-plane Cartesian coordinates relative to a reference on-sky position :math:`(x_0,y_0)`, which is relative to the center of the ellipse (galaxy center). Returns: numpy.ndarray: The :math:`{\mathbf x}` vectors (separated by rows) as defined by the solution to :math:`{\mathbf A}^{-1}\ {\mathbf b}` Raises: ValueError: Raised if object was not properly defined or if the X and Y arrays do not have the same size. """ if not self._defined(): raise ValueError('SemiMajorAxisCoo object not fully defined!') # _x = numpy.asarray(x) # _y = numpy.asarray(y) _x = numpy.atleast_1d(x) _y = numpy.atleast_1d(y) if _x.size != _y.size: raise ValueError('X and Y arrays must have the same size') out = numpy.empty((_x.size, 6), dtype=float) for i, (xx, yy) in enumerate(zip(_x.ravel(),_y.ravel())): self._setB(xx,yy) out[i,:] = linalg.lu_solve((self.Alu, self.Apiv), self.B) return out.reshape(_x.shape + (6,))
[docs] def solve_inverse(self, x, y): r""" Use `scipy.linalg.lu_solve`_ to solve :math:`{\mathbf f} = {\mathbf C}^{-1}\ {\mathbf d}`. Args: x,y (array-like): The semi-major-axis Cartesian coordinates :math:`(x_a,y_a)`. Returns: numpy.ndarray: The :math:`{\mathbf f}` vector as defined by the solution to :math:`{\mathbf C}^{-1}\ {\mathbf d}` Raises: ValueError: Raised if object was not properly defined or if the X and Y arrays do not have the same size. """ if not self._defined(): raise ValueError('SemiMajorAxisCoo object not fully defined!') # _x = numpy.asarray(x) # _y = numpy.asarray(y) _x = numpy.atleast_1d(x) _y = numpy.atleast_1d(y) if _x.size != _y.size: raise ValueError('X and Y arrays must have the same size') out = numpy.empty((_x.size, 4), dtype=float) for i, (xx, yy) in enumerate(zip(_x.ravel(),_y.ravel())): self._setD(xx,yy) out[i,:] = linalg.lu_solve((self.Clu, self.Cpiv), self.D) return out.reshape(_x.shape + (4,))
[docs] def coo(self, x, y): r""" Calculate :math:`{\mathbf x}` using :func:`solve` for the provided :math:`(x_f,y_f)` and return the semi-major-axis Cartesian and polar coordinates, :math:`(x_a,y_a)` and :math:`(R,\theta)`. This combines the functionality of :func:`cartesian` and :func:`polar`, and so is more efficient than using these both separately. Args: x,y (array-like): The coordinates :math:`(x_f,y_f)`, which are the sky-right, focal-plane position relative to a reference on-sky position :math:`(x_0,y_0)` relative to the center of the ellipse (galaxy center), Returns: numpy.ndarray: Four arrays with the semi-major-axis Cartesian and polar coordinates: :math:`x_a, y_a, R, \theta`. """ coo = self.solve(x, y) return (coo[...,4], coo[...,5]) + self._calculate_polar(coo[...,4], coo[...,5])
[docs] def polar(self, x, y): r""" Calculate :math:`{\mathbf x}` using :func:`solve` for the provided :math:`(x_f,y_f)` and return the semi-major-axis polar coordinates, :math:`(R,\theta)`, where .. math:: R &= \sqrt{x_a^2 + y_a^2} \\ \theta &= \tan^{-1}\left(\frac{-y_a}{x_a}\right) Args: x,y (array-like): The coordinate :math:`(x_f,y_f)`, which is the sky-right, focal-plane position relative to a reference on-sky position :math:`(x_0,y_0)` relative to the center of the ellipse (galaxy center), Returns: numpy.ndarray: Two arrays with the semi-major-axis polar coordinates: :math:`R, \theta`. """ coo = self.solve(x, y) return self._calculate_polar(coo[...,4], coo[...,5])
[docs] def polar_invert(self, r, theta): r""" Calculate :math:`{\mathbf f}` using :func:`solve` for the provided :math:`(R,\theta)` and return focal-plane cartesian coordinates :math:`(x_f,y_f)`. Args: r,theta (array-like): The semi-major-axis polar coordinates :math:`(R,\theta)`. Returns: numpy.ndarray: Two arrays with the focal-plane Cartesian coordinates :math:`(x_f,y_f)`. """ xd, yd = self._calculate_cartesian(r, theta) coo = self.solve_inverse(xd, yd) return coo[...,0], coo[...,1]
[docs] def cartesian(self, x, y): r""" Calculate :math:`{\mathbf x}` using :func:`solve` for the provided :math:`(x_f,y_f)` and return the semi-major-axis Cartesian and coordinates, :math:`(x_a,y_a)`. Args: x,y (array-like): The coordinate :math:`(x_f,y_f)`, which is the sky-right, focal-plane position relative to a reference on-sky position :math:`(x_0,y_0)` relative to the center of the ellipse (galaxy center), Returns: numpy.ndarray: Two arrays with the semi-major-axis Cartesian coordinates, :math:`x_a, y_a`. """ coo = self.solve(x, y) return coo[...,4], coo[...,5]
[docs] def cartesian_invert(self, x, y): r""" Calculate :math:`{\mathbf f}` using :func:`solve` for the provided :math:`(x_a,y_a)` and return focal-plane cartesian coordinates :math:`(x_f,y_f)`. Args: x,y (array-like): The semi-major-axis Cartesian coordinates :math:`(x_a,y_a)`. Returns: numpy.ndarray: The focal-plane Cartesian coordinates :math:`(x_f,y_f)`. """ coo = self.solve_inverse(x, y) return coo[...,0], coo[...,1]